96 research outputs found

    Extreme Longitudinal Variability of Plasma Structuring in the Equatorial Ionosphere on a Magnetically Quiet Equinoctial Day

    Get PDF
    We investigate the extreme longitudinal variability of equatorial scintillation under quiet magnetic conditions during 22–23 March 2002. Scintillation Network Decision Aid (SCINDA) observations show intense activity in the South American–Atlantic sector during local evening hours, whereas an absence of scintillation is seen in the far east Asian sector. Ground- and space-based measurements from SCINDA, the Global Ultraviolet Imager (GUVI), TOPEX, and a chain of GPS receivers are used in combination with the Utah State University Global Assimilation of Ionospheric Measurements (USU-GAIM) model to explore the relationship between the large-scale ionization distribution and small-scale irregularities at low latitudes in both the scintillating and nonscintillating longitude sectors. Our analysis shows that there are significant differences in the evolution of the ionization distributions during the evening hours, which are likely the result of differences in the daytime and postsunset vertical plasma drift in the two sectors. This study demonstrates the importance of USU-GAIM as a new tool for investigating longitudinal as well as day-to-day variability that is observed in the large-scale distribution of the ionosphere and how this relates to the occurrence of scintillation

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains reports on twelve research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 85-04381)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-270)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-725)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)U.S. Army - Research Office Durham (Contract DAAG29-85-K-0079)International Business Machines, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-269)Simulation TechnologiesSchlumberger-Doll Researc

    New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.

    Get PDF
    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Clash of Geofutures and the Remaking of Planetary Order: Faultlines underlying Conflicts over Geoengineering Governance

    Get PDF
    Climate engineering (geoengineering) is rising up the global policy agenda, partly because international divisions pose deep challenges to collective climate mitigation. However, geoengineering is similarly subject to clashing interests, knowledge‐traditions and geopolitics. Modelling and technical assessments of geoengineering are facilitated by assumptions of a single global planner (or some as yet unspecified rational governance), but the practicality of international governance remains mostly speculative. Using evidence gathered from state delegates, climate activists and modellers, we reveal three underlying and clashing ‘geofutures’: an idealised understanding of governable geoengineering that abstracts from technical and political realities; a situated understanding of geoengineering emphasising power hierarchies in world order; and a pragmatist precautionary understanding emerging in spaces of negotiation such as UN Environment Assembly (UNEA). Set in the wider historical context of climate politics, the failure to agree even to a study of geoengineering at UNEA indicates underlying obstacles to global rules and institutions for geoengineering posed by divergent interests and underlying epistemic and political differences. Technology assessments should recognise that geoengineering will not be exempt from international fractures; that deployment of geoengineering through imposition is a serious risk; and that contestations over geofutures pertain, not only to climate policy, but also the future of planetary order

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore